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Abstract. The work presents results of the application of a new OpenFOAM R© solver QGDFoam for the numerical simulation of
viscous compressible flows in a wide range of Mach numbers. The new solver is based on the explicit approximation of
regularized, or quasi-gas dynamic (QGD) equations. The mixed finite-volume and finite-difference approximation is constructed
on unstructured spatial grids with co-located variables storage. The solver has been tested for a number of 1D Riemann problems
(Sod’s problem, Noh test and others) and 2D cases (Mach 3 forward step, Ladenburg supersonic jet flow with Mach reflection,
NASA Langley supersonic overexpanded jet flow and subsonic laminar flow over a backward-facing step). Results of numerical
simulations were compared with analytic solutions and OpenFOAM R© implementation of the Kurganov-Tadmor scheme, known as
rhoCentralFoam. The testing procedure has shown that whereas QGD algorithm is more diffusive than Godunov-type methods
with 2nd order TVD schemes with limiters, it is far less diffusive compared with pure upwind schemes as HLL. It was shown that
OpenFOAM implementation of the QGD algorithm allows to compute successfully subsonic, sonic and supersonic flows, while
other OpenFOAM R© solvers have a very limited operational Mach number range. Preliminary results of QGDFoam application for
large-scale 3D problems are presented. Scaling tests for up to 768 cores showed good scalability of QGDFoam solver.

INTRODUCTION

The solver QGDFoam implementing the QGD numerical algorithm was developed in [1] and is now being under
maintenance. The main advantages of the QGD-algorithm are:

• single numerical approach for flows with different speeds: from subsonic to hypersonic, from laminar to fully
developed turbulence;

• explicit schemes with simple approximation of spatial terms yielding good scalability for HPC computations;

• single set of tuning parameters for all kind of simulation: relaxation time τ, maximum Courant number Comax

and additional viscosity coefficient ∆QGD.

Recommendations for choosing values of τ, Comax and ∆QGD were deduced analytically for a few simple special
cases (one-dimensional, with uniform orthogonal grids, at particular Mach and Re numbers and so on) [2]. Though,
there is no justified procedure for a general case which can be applied to simulate complex geometries with arbitrary
Ma and Re numbers, such as turbulent wakes after wind mills[3] on polyhedral meshes. This work aims at the further
studying the adjustment of tuning parameters in the QGD-algorithm, for a case of industrial interest, namely the
supersonic flow around a blunt body. A secondary objective of the research is the measurement of parallel execution
efficiency of the QGDFoam solver.
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QGDFOAM — THE OPEN-SOURCE IMPLEMENTATION OF QGD NUMERICAL
ALGORITHM

Modern commercial and open-source general-purpose CFD programs are dominated by three types of numerical
algorithms:

• operator splitting techniques (PISO, SIMPLE and other) for viscous subsonic flows;
• meshless methods for unsteady external subsonic flows around moving bodies, such as Vortex Method (see [4]);
• Godunov-type or flux-splitting methods for inviscid flows.

Each of those approaches imposes strict restrictions on the application area. Justified by assumptions about the
numerical solution, these restrictions do not allow to simulate regimes where both subsonic and supersonic types of
flow are present. These restrictions are removed in a new system of equations known as regularized or quasi-gas
dynamic equations.

In order to extend the scope of application of QGD numerical algorithms and to simplify the process of
verification and validation, QGDFoam solver has been developed on top of OpenFOAM R© platform. It encompasses
the library libQGD for approximation of τ-terms and solver QGDFoam for the simulation of compressible viscous
perfect-gas flows.

QGD equations
Like Navier-Stokes equations, the QGD system describes the evolution of gas density ρ, velocity ~U and pressure p,
as functions of space co-ordinates and time. But in contrast with the Navier-Stokes equations, the QGD parameters
are regarded as averaged, or smoothed values over some small time interval. Such smoothing of the gas dynamic
parameters ρ, p and ~U leads to the appearance of additional dissipative terms in the corresponding equations with
an additional dissipative coefficient, which has the dimension of a time and is denoted as τ, e.g. [5, 2, 6, 7]. It is
related to the averaging time. When τ tends to zero, the system of QGD equations, which describes the evolution of
smoothed gas-dynamic parameters, reduces to Navier-Stokes equations. The dissipative nature of τ-terms is ensured
by the existence of the non-negative dissipative function for QGD equations system.

The QGD system in Cartesian coordinates writes:

∂ρ

∂t
+ ∇ · ~jm = 0, (1)

∂ρ ~U
∂t

+ ∇ · (~jm ⊗ ~U) + ∇p = ∇ · Π̂, (2)

∂ρe
∂t

+ ∇ · (~jmhtot) + ∇ · ~q = ∇ · (Π̂ · ~U). (3)

Here, for simplicity reasons, external forces and heat sources are omitted, and the gas is supposed to be ideal.
The full system can be found, for example, in [2]. The total energy per unit volume ρe and the total specific enthalpy
htot are defined as ρe = ρu + ρ 1

2 ( ~U · ~U) and htot = e + p/ρ, where u is specific internal energy. The mass flux density
~jm is given by:

~jm = ρ( ~U − ~w), ~w =
τ

ρ

(
∇ ·

(
ρ ~U ⊗ ~U

)
+ ∇p

)
. (4)

The viscous stress tensor Π̂ and the heat flux ~q write

Π̂ = Π̂NS + τ ~U ⊗ ρ( ~U · ∇ ~U +
1
ρ
∇p) + τÎ( ~U · ∇p + γp∇ · ~U), (5)

Π̂NS = µ(∇ ~U + (∇ ~U)T − Î
2
3
∇ · ~U), (6)

~q = ~qNS − τ ~Uρ( ~U · ∇u + p ~U · ∇(
1
ρ

)), ~qNS = −κ∇T. (7)
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Here, γ is the adiabatic exponent, Î the unit tensor. The internal energy per unit mass for a perfect-gas is
u = p/(ρ(γ − 1)). Pressure, density and temperature T are linked through the perfect-gas equation-of-state (EoS):

p = ρRT, (8)

where R is the unit-mass perfect gas constant. The thermal conductivity is given by

κ =
µCp

Pr
, (9)

where Pr is the Prandtl number, Cp is the specific heat capacity at constant pressure. The dynamic viscosity µ contained
in expressions (5)–(9) for Π̂ and ~q is defined as a function of temperature:

µ = µ(T ), (10)

QGD equations approximation

The system of QGD equations (1) -(3) has been approximated with the Finite Volume Method (FVM) implemented
in open-source library OpenFOAM R©. The choice of this approach is justified by the:

• successful application of FVM on staggered irregular triangular meshes for QGD equations, see [2];

• conservativeness and boundedness properties of Finite Volume Method.

This implementation of FVM uses co-located storage with compact stencil. According to this approach the
computational domain is approximated as a set of non-overlapping volumes of arbitrary shape, connected to each
other only through one common face, [8]. The unknown gas dynamics fields are averaged over cell volumes. The
averaged values are stored at cell centers P.

Balance equations describing the flow are approximated in the integral formulation using the Ostrogradsky-Gauss
theorem to replace the volume integral with a surface integral.The mean value theorem is used to calculate the surface
and volume integrals of approximated functions.

Traditionally, in most of OpenFOAM R© applications operator-splitting techniques are used (such as PISO,
SIMPLE and their modifications) to solve pressure-velocity linked equations at low speeds, and Euler or multi-stage
Runge-Kutta schemes with approximate Riemann solvers (Kurganov— Tadmore, HLLC, AUSM+) for high-speed
flows [9]. The matrix-coupled approach is used more rarely for pressure-velocity coupled simulations of
incompressible fluids. The hybrid pressure-based and Kurganov— Tadmore approach was proposed [10].

QGD equations contain terms which need a special approximation procedure in OpenFOAM R©. These terms are
denoted as “QGD”-fluxes. They have been approximated with the Least-Squares Method on unstructured meshes,
which is second-order accurate in space.

The semi-implicit approach, similar to [9] was used to approximate QGD equations. According to procedure
[9] diffusive terms are approximated using an implicit scheme, while other terms are approximated using an explicit
scheme. It has been shown that the explicit approximation of QGD equations is conditionally stable.

Mass conservation equation

ρn = ρo −
∆t
V

∑
f

Φ f (ρo)

Φ f (ρo) = ρ f ~U f · ~S f − τ f

([
∇ · (ρ ~U ⊗ ~U)

]
f

+
[
∇p

]
f

)
· ~S f
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Momentum balance equation (
ρ ~U

)p
=

(
ρ ~U

)o
−

∆t
V

∑
f

Φ f (
(
ρ ~U

)o
)

ρn ~Un − ρo ~Uo

∆t
−
ρn ~U p − ρo ~Uo

∆t
=

1
V

∑
f

~S f · Π̂
NS
f

Φ f ((ρ ~U)o) = Φ f (ρo) ~U f + p f ~S f − ~S f · Π̂
QGD
f

Π̂
QGD
f = τ f ~U f ⊗ (ρ f ~U f ·

[
∇ ~U

]
f

+
[
∇p

]
f )+

τ f Î( ~U f · [∇p] f + γ f p f

[
∇ · ~U

]
f
)

Π̂NS
f =

(
µ∇ ~Un

)
f

+ µ f

(
(∇ ~Uo)T

f −
2
3

Î(∇ · ~Uo) f

)
Energy balance equation

(ρe)p = (ρe)o −
∆t
V

∑
f

Φ((ρe)o)

ρnun − ρouo

∆t
−
ρnup − ρouo

∆t
=

1
V

∑
f

(
κ

Cv

)
f

δun

δ~n f
|~S f |+

1
V

∑
f

Π̂NS
f ·

~Uo
f

Φ f ((ρe)o) = Φ f (ρo) f htot
f − Π̂

QGD
f · ~U f · ~S f−

τ f ~U fρ f ( ~U f · [∇u] f + p f ~U f ·

[
∇

1
ρ

]
f
) · ~S f ,

where superscript n refers to the new time layer, o – to the old time layer, p – to the predicted values. V is the volume
of computational cell, ∆t – the time step, ~S f – the area of the face between two adjacent cells, multiplied by normal
vector value ~n f . If not mentioned explicitly, values in expressions are evaluated from previous time layer.

Within this approach, the time step is limited only by the CFL criterion:

CFL = (| ~U | + Cs)
∆t
∆h
≤ CFLmax (11)

CLOSURE RELATIONS FOR τ-COEFFICIENT

The QGD system, compared with the Navier-Stokes one includes an additional dissipative coefficient τ. Due to the of
construction of the QGD system, this coefficient must be small, producing a small contribution of the additional terms
compared with the other ones.

Derivation of τ-coefficient for a rarefied gas
The value of τ can be determined using the kinetic derivation of the QGD system or by comparing the additional τ
terms in the continuity equation (1) with the classical descriptions of self-diffusion, thermodiffusion or barodiffusion
effects, see [5], [2]. For a perfect gas, all these approaches lead to

τ =
µ

p S c
, (12)
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where S c is the Schmidt number, that is of the order of 1. So τ is close to the so-called maxwellian relaxation time
τMax = µ/p, that is close to a mean free time for the gas particles, and τ can be estimated as

τ ∼ τMax ∼
λ

Cs
. (13)

Here λ is the mean free path of the gas particles, and Cs is the sound velocity. A more general formula for τ was
proposed by Sheretov [5] in the form

τ = γ
µ

S c C2
s ρ

, (14)

τ-coefficient as regulizer of a numerical solution
For dense gases and liquids, τ value is negligibly small, and the role of additional terms in QGD equations becomes
negligible compared with that of viscous Navier-Stokes terms. Hence, for computational purpose, τ should be
increased to make it act as an efficient algorithm regularizer.

One of the natural approaches for the numerical implementation of τ-terms consists in replacing the mean free
path λ in (13) by the computational space step ∆h in the form

τ = α
∆h

Cs
, (15)

where α = const is a small numerical factor between 0 and 1 for tuning the computational solution.
Despite of its simplicity, the implementation of QGD equations with τ terms in the form (15) allows to use the

central differences approximation for all spatial derivatives without stabilizing the algorithm by limiting procedures
means of any kind. The Courant stability of the explicit in time central-difference QGD schemes is ensured by the
τ-terms.

Different approaches for the approximation of QGD coefficients
The value of τ may be chosen in a more sophisticated ways, depending on the problem under consideration. Several
examples used in previous computations are listed below.

In problems with non-negligible variations of Knudsen numbers, a combination of (12) and (15) was used in the
form

τ =
µ

p S c
+ α

∆h

Cs
. (16)

For flows with high Reynolds and Mach numbers the τ dissipation included in the QGD system can be insufficient
to stabilize the solution. In this case additional dissipation can be included in the Navier-Stokes viscous stress tensor
to increase the viscosity coefficient as

µ→ µ + ∆QGD p τ, (17)

where ∆QGD is a positive tuning coefficient (denoted as S cQGD in some works).
For Euler flows, where molecular viscosity and conductivity µ = κ = 0, τ is calculated using (15). Thus the

dissipative coefficients µ = pτ and heat conductivity (9) are regarded as artificial.
Basic values of tuning coefficients are α = 0.5, ∆QGD = 1, Pr = 1. Numerical dissipation and diffusion could be

adjusted by decreasing α and ∆QGD coefficients down to values at which the solution becomes unstable or begins to
oscillate. The value of Pr must be kept equal to 1 in most cases.

Varying QGD coefficients
Introducing a dependence of the tuning coefficient from Mach number Ma in (17) as ∆QGD = ∆QGD(Ma) allows to
vary the level of artificial dissipation. For example, it can be increased in the vicinity of shock waves and decreased
in the boundary layers.

In this work, the value of additional QGD viscosity coefficient is related to the marker of shocks as follows:

∆QGD =
|∇ρ|

ρ
∆h (18)
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For stability reasons, the calculated value is bounded between given minimum ∆
QGD
min and ∆

QGD
max limits.

For wall boundary treatment, standard wall functions from OpenFOAM models were used to replace ∆QGD at
surfaces where no-slip condition is imposed:

∆QGD
w = (νtρ)w, (19)

where νt is a turbulent viscosity, calculated from wall-function law, subscript “w” stands for “wall”. τ is calculated
using relation (15).

VERIFICATION OF THE QGDFOAM SOLVER

The QGDFoam solver has been tested for several 1D and 2D cases [1]. Results are briefly presented below. They
prove the applicability of the QGD numerical algorithm to solve properly sub-, trans- and supersonic flows in inviscid
and viscous regimes. This property makes the QGD numerical algorithm peculiarly valuable for flows where both
viscous and high speed effects, such as shocks, simultaneously.QGDFoam showed a more diffusive behavior than
rhoCentralFoam solver with TVD flux limiters, but it is less diffusive than Godunov-type methods, such as HLL.

1D verification cases
This section considers the Riemann problems discussed in, e.g., [11] – [12]. They reflect the characteristic features
of unsteady gas flows with strong shock waves that are difficult for numerical simulation. The initial data for the
Rienmann problems are listed in the Table 1 according to the notations used in [12]. Specifically, the flow parameters
on the left and right sides of the discontinuity are denoted by subscripts L and R, respectively. The time at which the
plots are shown is denoted by t f in.

The boundary conditions are the same as the corresponding initial conditions at the ends of the computational
domain. In all computations, γ = 1.4, except for the Noh problem (Test 3) with γ = 5/3. The length of the
computational domain is equal to 1, from x = −0.5 to x = +0.5. The discontinuity is placed at x = 0.

We compare the results obtained by QGDFoam and rhoCentralFoam solvers. All solutions for QGDFoam
solver can be obtained with regularization paramener α = 0.4 and numerical coefficient ∆QGD = 1. QGDFoam and
rhoCentralFoam solvers use a constant Courant number Co and a variable time step.

TABLE 1. Initial conditions for Riemann problems

Test ρL uL pL ρR uR pR t f in

1 1 0.75 1 0.125 0 0.1 0.2
2 1 −2 0.4 1 2 0.4 0.15
3 1 1 10−6 1 −1 10−6 1
3a 1 −19.597 1000 1 −19.597 0.01 0.012
4 5.999 19.597 460.894 5.999 −6.196 46.095 0.035
5 1.4 0 1 1 0 1 2
6 1.4 0.1 1 1 0.1 1 2
7 0.126 8.904 782.928 6.591 2.265 3.154 0.0039

A comparison of L1-norm of error, computed for Tests 1 –7 is presented in Table 2. L1-norm of error has been
calculated on the self-similar solutions for 1D inviscid gas flow equations and a numerical approximation obtained on
a uniform mesh from QGDFoam or rhoCentralFoam solvers, respectively :

L1 =
1
N

N∑
i=1

∣∣∣aexact
i − anum

i

∣∣∣ , (20)

where N — number of computational points, aexact
i — exact solution (density, velocity, etc.) at the i− th computational

point, anum
i — numerical solution at the i − th computational point calculated using rhoCentralFoam or QGDFoam

solvers. For tests 1, 3, 3a, 5, 6, 7 density ρ was used to measure L1-norm and for tests 2 and 4 — internal energy u.
The comparison [1] shows that QGD algorithm is competitive with rhoCentralFoam method, and is even better

for a number of cases. For tests 1 and 2 the QGD Courant number exceeds the rhoCentralFoam Co. For tests 3a and 7
the Co values are equal. For tests 2 and 3 the entropy tail in the QGD formulation is smaller than in rhoCentralFoam
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TABLE 2. Comparison of L1-norm computed for Tests 1 – 7 using rhoCentralFoam (RCF)
and QGDFoam and solvers

Test No 1 2 3 3a 4 5 6 7

RCF 0.0024 0.2726 0.0287 0.6935 1.3929 0.0103 0.0103 0.0532
QGD 0.0065 0.2909 0.0368 0.6849 3.6953 0.0021 0.0116 0.0775

one. In test 5 QGD solution coincides with the analytical solution. Nevertheless, additional tuning of the QGDFoam
and rhoCentralFoam settings may bring further improvements for both methods.

2D verification cases
The properties of the QGDFoam solver were studied in comparison with standard OpenFOAM R© solvers in the
following cases:

• supersonic inviscid flow over forward-facing step in a channel;

• subsonic viscous laminar flow over backward-facing step in a channel;

• supersonic underexpanded jet flow with Mach reflection;

• supersonic overexpanded jet flow with Mach reflection.

Verification of QGDFoam solver in the forward-facing step showed its adequacy in representing inviscid
supersonic flows. The method was clearly capable to reproduce the formation of secondary waves reflecting from the
upper wall of the channel and upper surface of the step. Behind the rarefaction wave, over the corner of the ledge, the
gas density is at its minimum, and near the contact discontinuity, after the triple point over the ledge, the gas density
is at its maximum. The results showed that QGDFoam density distribution seems less smoothed compared with
rhoCentralFoam upwind and more smoothed compared with rhoCentralFoam TVD 2nd order.

Standard OpenFOAM R© high-speed flows solvers, based on Godunov-type methods (rhoCentralFoam, for
example) fail to compute low-speed viscous flow problems. To assess properties of QGDFoam, the subsonic laminar
flow of a backward-facing step was considered. Results of QGDFoam calculations were compared with experiment
and another OpenFOAM R© solver simpleFoam for pure incompressible viscous flows. The comparison [1] shows that
for Reynolds numbers up to 300, the results of both methods are in a good agreement with the experiment. For
Reh ≥ 400, the difference increases as the flow becomes three-dimensional, see [2].

The implemented QGD algorithm was able to resolve Mach reflection for the Ladenburg test, which is used often
for assessing gas dynamics codes. The algorithm implemented in QGDFoam with ∆QGD = 1.0 is more diffusive than
Kurganov-Tadmore scheme with 2nd order TVD approximation of convective fluxes, but far less diffusive than HLL
scheme (Kurganov-Tadmor (KT) scheme with pure upwind). The QGDFoam results can be improved by adjusting
artificial viscosity with the ∆QGD coefficient. For example, QGD algorithm produces a solution similar to KT with
TVD by setting S cQGD = 0.15.

For the last test, an overexpanded nozzle was simulated with several shock-cells after the exit. Mesh convergence
of the center-line time-averaged pressure distribution was compared with the experiment. The QGD solution converges
to experimental data (first two shock cells) very well. Moreover, the QGD algorithm resolved accurately the 3rd shock
cell which is located in the beginning of the transitional region, where Kelvin-Helmholtz instability waves start to
emerge. Further discrepancies between calculation and experiment can be explained by both assumption of flow
axisymmetry or insufficient space discretization.

VALIDATION OF THE QGDFOAM SOLVER

The capability of the developed solver to simulate high Reynolds number compressible flows over blunt bodies is
considered. As a first step, the proposed approach for using varying ∆QGD coefficient and near-wall functions is
verified for the case of high-speed flow over the RAE 2822 airfoil. The parameter settings determined in the former
case are used for the industrial-size simulation of a 3D supersonic flow over blunt body.

030105-7



Transonic flow over the RAE 2822 airfoil
Considering the flow around the RAE 2282 airfoil, the results of the QGDFoam simulations have been
compared with the experimental data [13] and with simulations of OpenFOAM R© solvers rhoCentralFoam [9]
and rhoPimpleCentralFoam [14]. Experimental flow parameters were Ma = 0.725, angle of attack 2.920 and
Re = 6.5 × 106. According to recommendations from [15], the simulations were carried with Ma = 0.73, angle of
attack of 2.790. Since the flow is turbulent and unsteady, one of the standard OpenFOAM R© Large Eddy
Simulation models was chosen to calculate sub-grid scale viscosity, namely the Smagorinsky model [16] for the
two-dimensional flow. The turbulent boundary layer is accounted for using standard OpenFOAM R© wall functions.

The computational domain is shown in the Fig. 1 and extends from -6 chord lengths on the left-hand side to 7
chord lengths on the right-hand side and from -6 chord lengths at the bottom to 7 chord lengths at the top. The inner
region with quadrilateral elements has the size 4C × 2C, where C is the chord length of the airfoil. The computational
mesh was built with quadrilateral elements in the region near the airfoil. The rest of the domain was meshed with
triangular elements. The total number of elements is ≈ 109k.

The gas is assumed to be perfect with an adiabatic exponent of 1.4. Subsonic inflow free stream conditions are
imposed at the vertical left and at the horizontal bottom boundaries with a fixed velocity and fixed temperature value.
Subsonic outflow free stream conditions were imposed at the vertical right and at the horizontal top boundaries. A
no-slip impermeable wall boundary condition is imposed at the surface of the airfoil. The simulation was performed
until a physical time such that the flow passed the domain 6 times. To get a steady-state distribution, the pressure
field was averaged in time for the window equal to 1 passage of flow through the domain. The comparison between
the experimentally measured pressure distribution and the numerically calculated values using QGDFoam,
rhoCentralFoam and rhoPimpleCentralFoam are presented in Fig. 2.

C 2 C

2
 C

W

H

(a) (b)

FIGURE 1. Sketch (a) and grid lines (b) of the computational domain for the case of transonic flow over RAE 2822 airfoil. Here
C is the chord length, W = 13C is the width of the domain and H = 12C is the height of the domain.

FIGURE 2. Comparison of experimentally measured pressure distribution (pressure coefficient) and calculated values using
OpenFOAM R© solvers QGDFoam (QGD), rhoCentralFoam (RCF) and rhoPimpleCentralFoam (RPCF).
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From the pressure distribution it can be seen that for this kind of flow all solvers operate almost identically.
However for the top surface the pressure distribution achieved by the QGDFoam-solver is slightly better. Discrepancies
between the simulation and the experiment at the leading edge of the top surface can be explained by the presence of
highly non-orthogonal cells in this region.

Supersonic flow over a blunt cylinder-flare model
A high-supersonic flow around a hemispherical-nose cylinder with a conical flare at different Mach numbers [17]
is studied, see Fig. 3. The gas is assumed to be perfect with an adiabatic exponent of 1.4. The Reynolds number is
Re = 7 × 106 with Mach numbers Ma = 2.95 and Ma = 4.04. To calculate sub-grid scale viscosity the Smagorinsky
LES model [16] was used. At body walls a logarithmic wall function was applied. The computational mesh was
built using the snappyHexMesh-utility and two different cell sizes, 1/192 and 1/384 of the body length, resulting in
≈ 2.2 and ≈ 7.2 million cells, respectively. The settings for the numerical schemes were set similar to the previous
case. Supersonic inflow free stream conditions are imposed at the vertical left and at the horizontal bottom planes
with a fixed velocity, fixed pressure and fixed temperature value. No-slip impermeable wall boundary conditions are
imposed at the surface of the model. Supersonic outflow free stream conditions were imposed at other external planes
of computational domain.

W

H

Leeward side

Windward side

L

FIGURE 3. Sketch of the computational domain for the case of a supersonic flow over a blunt cylinder-flare model. The length L
of the model is 127mm, W = 10L is the width of the domain and H = 12L is the height of the domain.

Flow field visualization and distribution of calculated pressure fields on the surface of the object are presented
in Fig. 4. A comparison of the simulation results (viscous and inviscid) and the experimental data [17] are presented
in Fig. 5 and 6. The zone of interest is located at the leeward side of the body between two incident shocks. The
experimental distribution of static pressure clearly shows the presence of the separation zone, where the subsonic
turbulent unsteady flow is expected. Inviscid models based on Euler or laminar Navier-Stokes equations are unable
to predict such kind of flows and produce a pressure spike near the second incident shock (see Fig. 6). Application
of standard wall-functions allows to avoid this spike, however resulting in very steep pressure gradient near the end
of separation zone. The same behavior could be observed for the RAE2822 airfoil test case. To resolve this region
the grid should be much more refined. It is seen from figures that application of standard wall-functions with QGD
algorithm allows to resolve near-surface flow without introducing viscous layer cells.

SCALABILITY OF THE SOLVER

The scalability of the solver has been measured for the NRC ”Kurchatov institute” HPC cluster, using the fine grid
for the case of supersonic flow over blunt cylinder-flare model. The computational cluster comprises 192 computing
nodes with eight Intel(R) Xeon(R) CPU E5345 2.33GHz processors, resulting in a total of 1536 computing cores.

TABLE 3. Parallel performance of the developed solver

NCPU 768 512 256 128 64
CPU time
per step,s 0.66 1.05 2.28 2.94 9.67
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FIGURE 4. Pressure field, stream lines and velocity field distribution around cylinder-flare blunt body model at M=4 and angle of
attack 100

FIGURE 5. Comparison of experimentally measured pressure distribution (normalized by free-stream pressure) and calculated
values using QGDFoam solver: Ma=3, angle of attack 100.

FIGURE 6. Comparison of experimentally measured pressure distribution (normalized by free-stream pressure) and calculated
values using the inviscid model [17] and the QGDFoam solver: Ma=4, angle of attack 100.

It can be seen from Table 3 that performance speedup is almost linear except a strange behavior for the
configuration with 128 CPUs. Doubtful results for 128 computing cores have been reproduced several times and
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could be explained by hardware issues.

CONCLUSION

Explicit solver for regularized gas dynamics equations QGDFoam has been verified for various 1D and 2D cases.
Verification showed that QGD algorithm implementation is able to simulate both viscous and inviscid flows at all
speeds. QGD algorithm is more diffusive than TVD schemes with Godunov fluxes, however the solution tends to the
analytical one when grid size decreases. Today QGDFoam is the only OpenFOAM solver which is able to simulate
subsonic, transonic and supersonic flows using a single numerical scheme.

The solver has been tested for 2D & 3D cases with large Re numbers (≈ 6 × 106): flow around RAE2822 airfoil
at transonic speed and supersonic flow around a blunt flare-body at Ma=3 and Ma=4.

Wall functions were used to account for near-wall effects in high-speed flows. Effective QGD viscosity coefficient
has been calculated using logarithmic wall law. Comparisons of the computed pressure distribution showed acceptable
agreement with experimental data.

NRC Kurchatov Institute HPC cluster performance scalability study of the solver showed linear speed-up for
number of cores from 128 to 768.
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