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Abstract. We consider the methodology of numerical schemes development for two-
dimensional vortex method. We describe two different approaches to deriving integral equation
for unknown vortex sheet intensity. We simulate the velocity of the surface line of an airfoil as
the influence of attached vortex and source sheets. We consider a polygonal approximation of
the airfoil and assume intensity distributions of free and attached vortex sheets and attached
source sheet to be approximated with piecewise constant or piecewise linear (continuous or
discontinuous) functions. We describe several specific numerical schemes that provide different
accuracy and have a different computational cost. The study shows that a Galerkin-type
approach to solving boundary integral equation requires computing several integrals and double
integrals over the panels. We obtain exact analytical formulae for all the necessary integrals,
which makes it possible to raise significantly the accuracy of vortex sheet intensity computation
and improve the quality of velocity and vorticity field representation, especially in proximity
to the surface line of the airfoil. All the formulae are written down in the invariant form and
depend only on the geometric relationship between the positions of the beginnings and ends of
the panels.

1. Introduction
Vortex methods of computational fluid dynamics (CFD) [1, 2, 3, 4, 5] that belongs to the class
of Lagrangian particle methods are very suitable for a wide range of engineering applications:
from estimating aerodynamical coefficients for aircraft and simulating aircraft trails to dealing
with hydroelastic flow-induced oscillations of structural elements and problems of industrial
aerodynamics. The flows that can be simulated using vortex methods are characterized by low
subsonic Mach numbers, when the effects of flow compressibility can be neglected. Efficient
parallel implementations of vortex methods, adapted for computations on both CPUs and
GPUs, makes it possible to solve certain hydrodynamic and hydroelastic problems much faster
in comparison with traditional mesh methods [6].

In the 2D case the most efficient modifications of vortex methods are able to simulate viscous
incompressible flows that are described by the Navier — Stokes equations [4, 5, 7, 8, 9]. We

http://creativecommons.org/licenses/by/3.0
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consider the problem in the most general case, when there is an incident flow and an airfoil of
an arbitrary shape, which can be movable and/or deformable.

Modifications of vortex methods to simulate 3D flows are also known, but there are
fundamental differences between 2D and 3D flows. The main feature of 2D flows is that the
vorticity vector is always perpendicular to the plane of the flow. It significantly simplifies
the solution procedure for 2D problems. However, in a number of applications dealing with
solving coupled aerohydrodynamic and aerohydroelastic problems a flat cross-sections approach
is applicable, which reduces a 3D problem to a much simpler problem of simulating 2D flows
around one or several cross-sections of the structure considered. Moreover, despite the differences
between mathematical formulations of 2D and 3D problems and their properties, a number
of basic approaches that proved to present an advantage when solving 2D problems may be
successfully used in the 3D case in much the same manner. This fact, in turn, is a powerful
stimulus for development of vortex methods.

2. Velocity field reconstruction
Vortex methods of simulating the flow around airfoils are based on the principle that was
discovered by Professor N.E. Zhukovsky. According to this principle, it is possible to replace a
stationary airfoil by an attached vortex layer placed on its surface line [10]. Conformal mapping
technique can be used to find the vortex sheet intensity for airfoils of primitive shapes; such
solutions can serve as benchmarks for verification of the numerical schemes being developed.

When solving the Navier — Stokes equations, Zhukovsky’s classical ideas remain correct, but
such vortex sheet is free instead of being attached, and according to Lighthill’s approach [11], it
can be considered as a result of the vorticity flux acting on the airfoil surface line K during an
infinitesimal time period. It means that the vorticity concentrated in this vortex sheet with the
intensity γ(r), r ∈ K is not connected with the airfoil and, after being generated on its surface
line, it becomes part of the vortex wake and moves in the flow according to the governing
equations.

If the airfoil is movable and/or deformable, we should introduce in addition to the free vortex
sheet mentioned above, i.e. attached vortex sheet with the intensity γatt and attached source
sheet with the intensity qatt [12, 13]. For simplicity, we assume that the velocity V K(r) is known
for an arbitrary point on the airfoil surface line K, so the intensities of the attached sheets can
be found explicitly:

γatt(r) = V K(r) · τ (r), qatt(r) = V K(r) · n(r), r ∈ K,

where τ (r) and n(r) are tangent and normal unit vectors to the airfoil surface line, respectively.
In order to compute the flow velocity for an arbitrary point of the flow domain, we use a

generalized Biot — Savart law [14]:

V (r) = V ∞ +
1

2π

∫
S

Ω(ξ)× (r − ξ )

|r − ξ |2
dSξ +

1

2π

∮
K

γ(ξ)× (r − ξ )

|r − ξ |2
dlξ +

+
1

2π

∮
K

γatt(ξ)× (r − ξ )

|r − ξ |2
dlξ +

1

2π

∮
K

qatt(ξ)(r − ξ )

|r − ξ |2
dlξ. (1)

Here S is the flow domain; attached and free vortex sheet intensity vectors and the vorticity
vector are

γatt(ξ) = γatt(ξ)k, γ(ξ) = γ(ξ)k, Ω(ξ) = Ω(ξ)k, (2)

respectively, where k is a unit vector orthogonal to the flow plane; on the airfoil surface
n(r)× τ (r) = k.
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The flow velocity limit value on the surface line of the airfoil cannot be computed directly
by using (1), because V (r) has a jump discontinuity there [1]. The following formula should be
used to compute it:

V −(r) = V (r)− γ(r)− γatt(r)

2
τ (r) +

qatt(r)

2
n(r), r ∈ K. (3)

3. Integral equation
In order to solve the problem of flow simulation around an airfoil we need to find the distribution
of free vortex sheet intensity over the surface line. We can do it by satisfying the boundary
condition on the surface line:

V −(r) = V K(r), r ∈ K. (4)

It can be shown that the equalities between normal components of velocities

V −(r) · n(r) = V K(r) · n(r), r ∈ K, (5)

or between their tangent components

V −(r) · τ (r) = V K(r) · τ (r), r ∈ K, (6)

are two equivalent sufficient conditions for satisfying the equality (4).
However, the resulting integral equations with respect to the unknown γ(r), which can be

derived from (5) and (6) after substituting the expression (3) for the limit value of velocity in
those, have quite different properties.

In the framework of “classical” implementations of vortex methods, the boundary condition
is used in form (5), and the governing integral equation, which is a first kind equation in this
case, can be written down as

1

2π

∮
K
Qn(r, ξ)γ(ξ) dlξ = fn(r), r ∈ K, (7)

where the kernel Qn(r, ξ) is an unbounded (singular) one of Hilbert-type

Qn(r, ξ) =
k × (r − ξ )

|r − ξ |2
· n(r) = −τ (r) · (r − ξ )

|r − ξ |2
,

and the right-hand side fn(r) is a known function which depends on the shape of the airfoil,
incident flow velocity, velocity of the airfoil itself and vorticity distribution in the flow domain:

fn(r) = −1

2
qatt(r)− n(r) ·

(
V ∞ − V K(r) +

1

2π

∫
S

Ω(ξ)× (r − ξ )

|r − ξ |2
dSξ +

+
1

2π

∮
K

γatt(ξ)× (r − ξ )

|r − ξ |2
dlξ +

1

2π

∮
K

qatt(ξ)(r − ξ )

|r − ξ |2
dlξ

)
. (8)

An approximate numerical solution of equation (7) requires specific quadrature formulae; in the
simplest case, those can be discrete vortex type quadrature formulae [1], which permit us to
select the principal value of the corresponding singular integral in the Cauchy sense.

If we construct the numerical scheme of our vortex method on the basis of a “tangent”
approach (6), the integral equation transforms into the second kind equation

1

2π

∮
K
Qτ (r, ξ)γ(ξ) dlξ −

1

2
γ(r) = fτ (r), r ∈ K, (9)
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where the kernel

Qτ (r, ξ) =
k × (r − ξ )

|r − ξ |2
· τ (r) = n(r) · (r − ξ )

|r − ξ |2

is now a uniformly bounded function when K is a smooth curve, and unbounded only in
proximity to angle points or sharp edges of a non-smooth airfoil surface line K, and the right-
hand side has the following form:

fτ (r) = −1

2
γatt(r)− τ (r) ·

(
V ∞ − V K(r) +

1

2π

∫
S

Ω(ξ)× (r − ξ )

|r − ξ |2
dSξ +

+
1

2π

∮
K

γatt(ξ)× (r − ξ )

|r − ξ |2
dlξ +

1

2π

∮
K

qatt(ξ)(r − ξ )

|r − ξ |2
dlξ

)
. (10)

Results of numerical experiments show that the “tangent” approach, which corresponds to
numerical solving the equation (9), makes it possible to raise the accuracy of vortex sheet
intensity computation significantly. Nevertheless, in some cases a “normal” approach (7) can
also be useful.

We should note that both equations (7) and (9) have an infinite set of solutions. In order to
select a physically plausible unique solution, an additional condition should be added, which in
most cases corresponds to given value of the integral from solution over the surface line:∮

K
γ(ξ)dlξ = Γ. (11)

4. Problem discretization
When solving a problem using vortex methods, the vortex wake is normally simulated by discrete
vortex-type singularities (vortex elements):

Ω(r, t) =
n∑

w=1

Γwδ̃(r − rw). (12)

Here n is the number of vortex elements, Γw and rw are intensities and positions of vortex
elements, respectively, and δ̃ is a two-dimensional Dirac delta function. Taking into account (2)
and (12), we obtain for the term, which corresponds to the integral over the flow domain in
right-hand side functions (8) and (10)

1

2π

∫
S

Ω(ξ)× (r − ξ )

|r − ξ |2
dSξ =

n∑
w=1

Γw

2π

k × (r − rw)

|r − rw|2
.

The simplest way to discretize the surface line K of the airfoil is to approximate it by a
polygon consisting of N rectilinear segments Ki, which we call hereinafter “panels”. Let us
denote panel lengthes by Li, their normal and tangent unit vectors by ni and τ i, respectively,
i = 1, . . . , N . Now all the integrals over the surface line in the previous formulae can be written
down as sums of integrals over separate panels.

We then consider the intensity distributions of the free and attached vortex sheets and source
sheet over the surface line to be piecewise-linear functions:

γ(r) =
N∑
i=1

(
γiϕ

i
0(r) + δiϕ

i
1(r)

)
, γatt(r) =

N∑
i=1

(
γatti ϕi0(r) + δatti ϕi1(r)

)
,

qatt(r) =
N∑
i=1

(
qatti ϕi0(r) + patti ϕi1(r)

)
, r ∈ K.
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Here ϕij(r), i = 1, . . . , N , j = 0, 1, is a set of basis functions:

ϕi0(r) =

{
1, r ∈ Ki,
0, r /∈ Ki;

ϕi1(r) =


(r − ci) · τ i

Li
, r ∈ Ki,

0, r /∈ Ki,
(13)

where ci is the center of the i-th panel, and the unit tangent vector τ i is directed from the
beginning to the end of the i-th panel. So, the basis function ϕi0 is constant over the panel,
while the basis function ϕi1 varies linearly from −1/2 to 1/2 along the i-th panel.

Different approaches can be used to construct a numerical solution γ(r) over the whole airfoil
surface line, as well as to approximate γatt(r) and qatt(r). In order to find unknown coefficients in
the representation of the solution, we use a Galerkin-type approach: the residual of equations (7)
or (9) should be orthogonal to projection functions {ψk(r)}.

A number of possible ways to numerical solution of the equation (9) are briefly described
below.

(i) In the simplest case a piecewise-constant discontinuous approximation can be considered,
so δi = 0, δatti = 0 and patti = 0 for all i = 1, . . . , N . So γatti and qatti should be chosen as
average values of the corresponding intensities over the panels:

γatti =
1

Li

∫
Ki

γatt(r)dlξ ≈ V K(ci) · τ i, qatti =
1

Li

∫
Ki

qatt(r)dlξ ≈ V K(ci) · ni.

As a result, the unknown distribution depends only on N unknown values γi, which can
be found from conditions of orthogonality to a set of projection functions {ψk(r)} =
{ϕk0(r)}Nk=1.
This approximation makes it possicle to achieve second-order accuracy with respect to the
average values γi of the free vortex sheet intensity over the panels and first-order accuracy
in the L1 norm.
Publication [15] presents a description of this approach and its comparison with less accurate
ones, as well as all the necessary formulae for computations.

(ii) Approximations of the solution γ(r) and known distributions γatt(r) and qatt(r) remain
the same as in the previous case, but unknown values γi, i = 1, . . . , N can be found from
collocation-type conditions, which means that the residual of equations (7) or (9) is equal
to zero only at certain selected points on the surface line, as a rule, at the centers of the
panels.
This modification is equivalent to the previous one, if {ψk(r)} = {δ(r− ck)}Nk=1, where δ is
a Dirac delta-function: ∫

Ki

g(r)ψi(r)dlξ = g(ci), i = 1, . . . , N.

(iii) In the most complicated case, piecewise-linear discontinuous approximation are considered,
so the resulting solution depends on 2N unknown values γi and δi, i = 1, . . . , N , which can
be found from the same approach with the only difference that now the set of projection
functions consists of functions {ϕi0(r)}Ni=1 and {ϕi1(r)}Ni=1 together. This method provides
the second-order accuracy with respect to the average values of the free vortex sheet intensity
γi and to the vortex sheet intensity distribution in the L1 norm.
Paper [16] presents a description of this method and the results of solving test problems for
airfoils of simple shapes (elliptical and the Zhukovsky wing).
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(iv) A “finite element-type” approach provides a continuous piecewise-linear solution
approximation. The basis functions in this case are first-order linear shape functions, which
can be easily constructed from (13):

ϕ̂i(r) =


1

2
ϕi−1
0 (r) + ϕi−1

1 (r), r ∈ Ki−1,

1

2
ϕi0(r)− ϕi1(r), r ∈ Ki, i = 1, . . . , N, K0 ≡ KN ,

and finally

γ(r) =

N∑
i=1

γ̂iϕ̂
i(r),

where unknown values γ̂i correspond to the intensities of the free vortex sheet at the
beginnings of the panels. In order to determine them, as in the FEM, we select projection
functions to be equal to the shape functions: {ψk(r)} = {ϕ̂k(r)}Nk=1.
If the exact solution is continuous, this modification provides second-order accuracy, same
as the previous one, but the dimension of the problem is twice as small and is equal to the
number of panels N . But if the airfoil has sharp edges or angle point, it leads to incorrect
behavior of the numerical solution in proximity to such points.
Note, that in the framework of the FEM approach Dirac delta functions can also be used
as projection ones.

(v) A “hybrid” schemes involves a piecewise-linear solution, which is discontinuous only at Nd

chosen points, and continuous at all others. The number of unknown values here is N +Nd,
all basis functions can be expressed through ϕi0 and ϕi1. Projection functions again coincide
with the basis ones.
Numerical experiments show that this approach remains correct and provides second-order
accuracy for airfoils with angle points and sharp edges when they are marked as discontinuity
points. This scheme may be called “cost-efficient” because the dimension of the resulting
matrix is N +Nd, which is much smaller than 2N .

Some other modifications are also possible for solving both equations (7) and (9) numerically,
but the main principles of constructing those remain the same.

The easiest way to take into account the additional condition (11) is to add one extra
“regularization” variable R to all the equations in the resulting linear system and solve it together
with the linear equation, which follows from (11) after discretization. Another possible approach
is to find pseudo-solution of a non-regularized linear system.

5. Analytical computation of integrals
In order to compute matrix and right-hand side coefficients for discrete analogues of the
equations (7) and (9) according to numerical schemes described in the previous section or some
other schemes that are constructed using Galerkin-type approach with piecewise-constant and
piecewise-linear basis and projection functions, it is necessary to compute the following integrals
(note that ϕi0 ≡ 1 over the i-th panel):

I0
j (r) =

∫
Kj

Q(r − ξ)dlξ, I1
j (r) =

∫
Kj

Q(r − ξ)ϕj1(ξ)dlξ,

I00
ij =

∫
Ki

dlr

∫
Kj

Q(r − ξ)dlξ, I01
ij =

∫
Ki

dlr

∫
Kj

Q(r − ξ)ϕj1(ξ)dlξ,

I10
ij =

∫
Ki

dlr

∫
Kj

Q(r − ξ)ϕi1(r)dlξ, I11
ij =

∫
Ki

dlr

∫
Kj

Q(r − ξ)ϕi1(r)ϕ
j
1(ξ)dlξ.
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We write down these integrals with a “vector kernel”

Q(r − ξ) =
r − ξ

|r − ξ |2
,

in order to have the possibility to adapt them easily to computing the integrals in equations (7)
and (9), taking into account the expressions (8) and (10) for their right-hand sides. It should
be noted that the kernel Q is anti-symmetric:

Q(r − ξ) = −Q(ξ − r),

so all other necessary integrals can be expressed through the ones considered.

5.1. Computation of integrals I0
j (r) and I1

j (r)
Figure 1 shows the j-th panel of the airfoil and the point r and introduces several auxiliary
vectors for computation of the integrals I0

j (r) and I1
j (r): vectors s and p join the beginning

and the end of the j-th panel to the point r, respectively.

point at position  
p

s

j
d

r

j
τ

j-th panel 

Figure 1. The j-th panel and auxiliary vectors

Employing these vectors after some transformations it is possible to write down the following
formulae:

I0
j (r) =

∫
Kj

Q(r − ξ)dlξ = αu0 × k + λu0,

I1
j (r) =

∫
Kj

Q(r − ξ)ϕj1(ξ)dlξ = αu1 × k + λu1 − τ j .

Here we denote

u0 = ω(τ j , τ j , τ j) = τ j , u1 =
1

2|dj |
ω(p+ s, τ j , τ j),

α = ̸ (p, s), λ = ln
|s|
|p|
,

where
ω(a, b, c) = (a · b) c+ (a× b)× c, ̸ (p, s) = Arg

(
p · s+ i(psk)

)
. (14)

5.2. Computation of integrals I00
ij , I

01
ij , I

10
ij and I11

ij

Figure 2 shows the i-th and j-th panels and introduces auxiliary vectors similarly to the previous
case: vectors di and dj are codirectional with the i-th and j-th panels; vectors s1 and s2 join
the beginning of the j-th panel with the end and the beginning of the i-th panel, respectively;
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i
τ

j
τ

i
d

j
d

2p

1s

2s
1p

i-th panel 
j-th panel 

Figure 2. The i-th and j-th panels and auxiliary vectors

vectors p1 and p2 join the end of the j-th panel with the end and the beginning of the i-th
panel, respectively.

These vectors enabled us to derive the following formulae after a number of transformations
performed in the Wolfram Mathematica computer algebra system:

I00
ij =

∫
Ki

dlr

∫
Kj

Q(r − ξ)dlξ = (α1v1 + α2v2 + α3v3)× k + (λ1v1 + λ2v2 + λ3v3),

I01
ij =

∫
Ki

dlr

∫
Kj

Q(r − ξ)ϕj1(ξ)dlξ =

=
(
(α1 + α3)v4 + α3v5

)
× k +

(
(λ1 + λ3)v4 + λ3v5

)
+

1

2
|dj |τ i,

I10
ij =

∫
Ki

dlr

∫
Kj

Q(r − ξ)ϕi1(r)dlξ =

=
(
(α1 + α3)v6 + α4v7

)
× k +

(
(λ1 + λ3)v6 + λ4v7

)
− 1

2
|di|τ j ,

I11
ij =

∫
Ki

dlr

∫
Kj

Q(r − ξ)ϕi1(r)ϕ
j
1(ξ)dlξ =

=
(
(α1 + α3)v8 + α4v9 + α3v10

)
× k +

(
(λ1 + λ3)v8 + λ4v9 + λ3v10

)
+

+
1

12

(
|dj |τ i + |di|τ j − 2ω(s1, τ i, τ j)

)
.

Here we have introduced the following notations, taking into account (14):

α1 = ̸ (s2, s1), α2 = ̸ (s2, p1), α3 = ̸ (p1, p2), α4 = α2 + α3 = ̸ (s2, p2)

λ1 = ln
|s1|
|s2|

, λ2 = ln
|p1|
|s2|

, λ3 = ln
|p2|
|p1|

, λ4 = λ2 + λ3 = ln
|p2|
|s2|

,

v1 = ω(s1, τ i, τ j), v2 = −ω(di, τ i, τ j), v3 = ω(p2, τ i, τ j),

v4 = − 1

2|di|
(
((s1 + s2) · τ i)ω(s1, τ i, τ j)− |s1|2τ j

)
, v5 =

|dj |
2|di|

ω(s1 + p2, τ i, τ i),

v6 =
1

2|dj |
(
((p1 + s1) · τ j)ω(s1, τ i, τ j)− |s1|2τ i

)
, v7 = − |di|

2|dj |
ω(s1 + p2, τ j , τ j),

v8 =
1

12|di||dj |

(
2
(
s1 · ω(s1 − 3p2, τ i, τ j)

)
ω(s1, τ i, τ j)− |s1|2(s1 − 3p2)

)
− 1

4
ω(s1, τ i, τ j),

v9 = − 1

12

|di|
|dj |

ω(di, τ j , τ j), v10 = − 1

12

|dj |
|di|

ω(dj , τ i, τ i).
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If i = j, then the corresponding integrals are singular, and their limit values, which are
required to compute matrix coefficients and right-hand sides, are equal to zero:

I00
ii = I01

ii = I10
ii = I11

ii = 0.

For neighboring panels, when i = j + 1 (p2 = 0, s1 ̸= 0), coefficients α3 and λ3 vanish. For
the other neighboring case, when j = i + 1 (s1 = 0, p2 ̸= 0), coefficients α1 and λ1 should be
equal to zero.

6. Conclusion
We derive exact analytical formulae for computing the integrals that arise in 2D vortex methods
during simulating the flow around airfoils in hydrodynamic and coupled hydroelastic problems.
These formulae are suitable for arbitrary airfoils when their surface lines are approximated by
rectilinear panels. The distribution of known or unknown intensities of vortex or source sheets
over the panels can be piecewise-constant or piecewise-linear, and either collocation-type or
finite element-type methods can be used for solving boundary integral equations. Implementing
a similar approach with higher-order basis functions (in particular, piecewise-quadratic) is
unreasonable since it would not lead to achieving higher accuracy. Further improvement of the
algorithm is possible only by taking into account the curvilinearity of the panels, for example,
by using a least squares approach [17].

Usage of the derived formulae makes it possible to raise significantly the accuracy of
computing the vortex sheet intensity and to improve the quality of velocity and vorticity field
representation, especially, in proximity to the surface line of the airfoil.
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