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Abstract. This paper is devoted to a numerical simulation of 2D gas dynamics flows on
uniform rectangular meshes using the Runge - Kutta - Discontinuous - Galerkin (RKDG)
method. The RKDG algorithm was implemented with in-house C++ code based on the
experience in the investigation of 1D case. The advantage of the RKDG method over the most
popular finite volume method (FVM) is discussed: three basis functions being applied in the
framework of the RKDG approach lead to a considerable decrease of the numerical dissipation
rate with respect to FVM. The results of the acoustic pulse simulation on a sufficiently coarse
mesh with the piecewise-linear approximation show a good agreement with the analytical
solution in contrast to the FVM numerical solution. For the Sod problem, the results of the
discontinuities propagation illustrate the dependence of the scheme resolution on the numerical
fluxes, troubled cell indicator and the limitation technique choice. The possibility to resolve
strong shocks is demonstrated with the Sedov cylindrical explosion test.

1. Introduction
The Runge — Kutta Discontinuous Galerkin (RKDG) method is one of the most popular high
order methods for handling the problems with a discontinuous solution. Its compact stencil
provides operating with complex geometry, hence RKDG is widespread in aeroacoustics [1, 2]
and hydrodynamics [3].

According to the Godunov theorem [4], this algorithm requires additional monotonization
for suppressing spurious oscillations with so-called limiters [5]. When these limiters are applied
in a region with a smooth solution, some of them may lead to a decreased order of accuracy.
Therefore, special indicators of troubled cells have been developed. However, an imperfection
of an indicating technology resulting in mistaken limiter usage remains an important problem.

In case of multidimensional simulation on unstructured meshes, one usually uses the minmod-
based limiters, e.g. MUSCL [6, 7]. Their widespread usage is mostly related to the ease of
implementation. Nevertheless, most of them, especially general kinds, provide a rather low
quality of discontinuities resolution.

Recent investigations for 1D case [8, 9] show a high efficiency of the limiters based on the
Weighted Essentially Non-Oscillatory (WENO) approach. The original idea of the WENO
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reconstruction is unsuitable for multidimensional modelling since it requires too wide a stencil
for the high order approximation [10]. However, modifications of the concept with a compact
approximation stencil containing only immediate neighbours of a cell have been developed
[11, 12].

In this paper, we compare the simple WENO (WENO S, [11]) limiter with the general
MUSCL limiter in order to estimate the efficiency of the minmod and WENO approaches using
the simplest implementations from each class. The goal of the current study is to develop a
background for the further research with unstructured meshes [13].

2. Governing equations
Let us consider a perfect compressible gas characterized with density ρ, velocity v = [u, v, w]T,
pressure p, specific heat capacity γ. The flow of such gas is described by the system of 2D Euler
equations [14]:

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= 0, (1)

with

U = [ρ, ρu, ρv, ρw, e]T ,

F = [ρu, ρu2 + p, ρuv, ρuw, (e+ p)u]T ,

G = [ρv, ρvu, ρv2 + p, ρvw, (e+ p)v]T .

(2)

where U is the conservative variables vector, F, G are the vectors of fluxes, e = ρε + 1
2ρ(u2 +

v2 + w2) is a volumetric total energy, ε is a specific internal energy. The mathematical model
should be closed with an Equation of State (EoS) for the perfect gas:

p = (γ − 1)ρε. (3)

The system (1)–(2) has the following quasilinear non-conservative form:

∂U

∂t
+A

∂U

∂x
+B

∂U

∂y
= 0.

This system is hyperbolic, and matrices A and B can be diagonalized using the corresponding
left and right eigenvectors matrices:

A = ΩA
RΛAΩA

L , ΩA
R =

(
ΩA
L

)−1
,

B = ΩB
RΛBΩB

L , ΩB
R =

(
ΩB
L

)−1
,

(4)

where Λj = diag[λj1, . . . , λ
j
5 ], j = A, B, — the diagonal eigenvalue matrices for A and B;

Ωj
R, Ωj

L are the right and left eigenvectors matrices, respectively.
The equations (1) are considered on [0; Lx]× [0; Ly]× (0; T ] space and time domain with the

initial conditions
U(x, y, 0) = U0(x, y). (5)

3. Overview of numerical method
3.1. Spatial discretization
Let us introduce the uniform spatial mesh with steps hx = Lx/Nx and hy = Ly/Ny which
consists of Nx · Ny cells Iij centered at (xi, yj) =

(
(i − 1/2)hx, (j − 1/2)hy

)
with corners at

points (
xi±1/2, yj±1/2

)
= (xi ± h/2 , yj ± h/2) , i = 1, Nx, j = 1, Ny.
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We consider the space of piecewise-continuous functions V k
h = {p : p|ij ∈ Pk(Iij)}, which are

polynomials of degree at most k with respect to x and y defined on each cell Iij . The system
(1), (5) can be approximated as follows: each equation should be multiplied by the test function
v(x, y) ∈ V k

h and integrated over the cell Iij [5].
We define the approximate solution as

Uh(x, y, t) =
∑
i,j

2∑
r=0

U
(r)
ij (t)φ

(r)
ij (x, y),

where
{
φ
(r)
ij (x, y)

}2
r=0

is the orthonormal basis defined for each cell Iij by the following way:

φ
(0)
ij (x, y) =

1√
hxhy

, φ
(1)
ij (x, y) =

√
12

h3xhy
(x− xi), φ

(2)
ij (x, y) =

√
12

hxh3y
(y − yj).

Being interested in the numerical solution, hereinafter we omit the subscript h. After
replacing v(x, y) with the basis functions, the following system of ODE for solution coefficients

U
(r)
ij , r = 0, 1, 2, is obtained:

dU
(r)
ij (t)

dt
=

∫
Iij

Fij

∂φ
(r)
ij

∂x
dxdy +

∫
Iij

Gij

∂φ
(r)
ij

∂y
dxdy −

−
∫

∂Iij,R

Fijφ
(r)
ij dx+

∫
∂Iij,L

Fijφ
(r)
ij dx−

∫
∂Iij,T

Gijφ
(r)
ij dy +

∫
∂Iij,B

Gijφ
(r)
ij dy, (6)

U
(r)
ij (0) =

∫
Iij

U0(x, y)φ
(r)
ij dxdy, k = 1, . . . , Nx ·Ny, r = 0, 1, 2.

Here Fij = F(Uij(x, y, t)), Gij = G(Uij(x, y, t)); ∂Iij,L, ∂Iij,R, ∂Iij,T and ∂Iij,B denote the
left, right, top and bottom boundaries of the cell Iij , respectively.

3.2. Time discretization
In case of high accuracy order space discretization, it is necessary to choose a consistent time
integration method. We use the second order explicit TVD Runge — Kutta method [15]:

U∗ = Un + τLh(Un),

Un+1 =
1

2
Un +

1

2
U∗ +

1

2
τLh(U∗),

where τ is a time step; Lh(U) is the right hand side operator for the ODE (6); Un and Un+1

are numerical solutions at the previous and current time steps, respectively.

3.3. Numerical fluxes
Since the numerical solution has discontinuities at the cells boundaries, the boundary fluxes
in (6) are evaluated with the so-called numerical fluxes F̃ and G̃ instead of original fluxes F and
G, respectively. The numerical fluxes are usualy computed using the approximate solution of
Riemann problem for each quadrature point on each cell-to-cell boundary (edge). This approach
is usually referenced to as Godunov-type scheme.



Irreversible Processes in Nature and Technics

Journal of Physics: Conference Series 1348 (2019) 012098

IOP Publishing

doi:10.1088/1742-6596/1348/1/012098

4

In this paper, we imply the idea of coordinate system rotation for each edge in order to
use one-dimensional numerical fluxes. In this way, the Local Lax — Friedrichs (LF), HLL
and the HLLC approximate Riemann solvers are used. Properties of rotational invariance and
hyperbolicity in time for 2D Euler equations (see [14] for details) help to deal with edges that
are not aligned with the Cartesian directions. The computation of numerical fluxes through
each edge does not depend on the position of the edge in space, hence the source code becomes
more simple and flexible. This approach will be significantly more useful in further research for
unstructured meshes.

3.4. Limiters
On the one hand, it is clear that high order basis functions in general case should provide a more
accurate numerical solution. On the other hand, high order spatial approximation leads to the
spurious oscillations in a numerical solution in the neighbourhood of strong discontinuities due
to the decrease of scheme viscosity. Non-linear limiters [5, 10] are used to control and suppress
such oscillations. For monotonization purposes we use the MUSCL approach [16] and the Simple
WENO (WENO S) limiter [11].

The simplest way to apply a limitation algorithm is the component-wise operating with the
vector of the conservative variables U. On the other hand, dealing with the so-called local
Riemann invariants — alternative variables obtained from U by using the local characteristic
decomposition of the matrices (4) of the quasilinear equation form — allows to improve a
numerical solution, however it increases significantly the computational cost of the whole
procedure [12]. The computational cost makes characteristic approach useless for the MUSCL
which simplicity is one of its benefits. At the same time this approach appears very effective for
the WENO-based limiters [8]. The approach procedures can be described as follows:

(i) get the average values U0
j of the numerical solution at a troubled cell Itr;

(ii) for each edge e of a troubled cell with an outward normal n = {cos θ, sin θ}:
(a) using the calculated average value compute the eigenvectors matrices ΩR(θ) and ΩL(θ);
(b) transform the conservative variables into the local Riemann invariants Wk = ΩL(θ)Uk,

k ∈ S, where S is the set of the cells which belong to the reconstruction stencil;
(c) apply a chosen limiter to the vector Wj in component-wise way;

(d) transform the result back into the conservative variables: Ũe
j = ΩR(θ)W̃j ;

(iii) construct the final result Ũj with area averaging:

Ũe
j =

∑
e Ũ

e
j |Ie|∑

e |Ie|
,

where |Ie| is the area of the neighbour cell joint with Itr through edge e.

Most of the well-known limiters decrease the accuracy being mistakenly applied in subregions
with a smooth solution. It nullifies the gist of high order solution approximation. Hence the
first step of the limitation procedure should be related to the proper detection of the so-called
“troubled cells”, i.e. the cells, the solution at which needs to be corrected for monotonicity and
stability purposes. In this paper, the KXRCF [17] indicator of the troubled cells is used.

4. Test cases
4.1. Acoustic pulse propagation
The first test case is simulation of acoustic cylindrical wave propagation induced by small initial
disturbance of density field ρ′. The initial disturbance is located at the center of rectangular
domain [0, Lx]× [0, Ly] and defined as the Gaussian function [18]:

ρ′(x, y)
∣∣
t=0

= ε exp
(
−2(x− 0.5Lx)2 − 2(y − 0.5Ly)2

)
, ε = 10−6.
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Note, that such acoustic problem satisfies the system of linearized Euler equations (1), defined
for small perturbations ρ′, u′, v′, p′ of density, velocity and pressure:

U = [ρ′, ρ0u
′, ρ0v

′, ρ0w
′, p′]T ,

F = [ρ′u0 + ρ0u
′, ρ0u0u

′ + p′, ρ0u0v
′, ρ0u0w

′, u0p
′ + γp0u

′]T ,

G = [ρ′v0 + ρ0v
′, ρ0v0u

′, ρ0v0v
′ + p′, ρ0v0w

′, v0p
′ + γp0v

′]T ,

where ρ0, u0, v0, p0 are the reference values of density, velocity components and pressure,
respectively.

The pressure distribution satisfies the constant speed of sound c =
√
γp0/ρ0. The reference

velocity field is assumed to be zero: v0 = [0, 0, 0]T; the reference levels of density and pressure
are assumed to be ρ0 = 1, p0 = 1. Sizes of the computational domain are Lx = Ly = 8.
Boundaries are assumed to be open.

The figure 1 represents the results of computations on the 20×20 cells mesh with the Courant
number

CFL =

√
p0
ρ0

τ

h

equals to 0.2. The solution is shown along the center line y = Ly/2 of the square domain at the
time moment t = 2.

High dissipation rate of the LF flux smoothes down the solution, obtained with FVM
(Fig. 1a). At the same time, piecewise-linear solution representation seems to be enough to
have a good agreement with an analytical solution. The HLL flux usage gives nearly the same
results. The significantly less dissipative HLLC flux (Fig. 1b) provides the better solution for
FVM. On the other hand, the result for piecewise-linear representation of the solution is not
affected by the change of a numerical flux.

Series of computations shows the stability of numerical scheme with the Courant numbers
up to 0.25.

(a) (b)

Figure 1. Propagation of acoustic pulse, mesh resolution 20×20 cells, CFL = 0.2, density plot
along the center line in x-direction, t = 2.0: (a) LF numerical flux, (b) HLLC numerical flux.
Black line is the piecewise-linear solution (3 basis functions), red line is FVM solution (1 basis
function), green line is the analytical solution.

4.2. The Sod problem
Another group of tests is based on modelling of the Sod problem with all three common types
of discontinuities: shock wave, rarefaction wave and contact discontinuity. A resolution quality
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of these features depends on the sensibility of a troubled cells indicator besides methods of
limitation and numerical fluxes, as it will be shown below.

The first test is the simulation in “quasi-one-dimensional” case. The solution is assumed to
propagate along the x-axis, the width of a computational domain in y-direction equals one cell
only. Initial conditions for this problem are following:

(ρ, u, v, w, p) =

{
(1, 0, 0, 0, 1), x ≤ 0.5,
(0.125, 0, 0, 0, 0.1), x > 0.5.

The following results are obtained using the mesh with 100 cells in x-direction and the
Courant number equals 0.1, computations are carried out until the time moment t = 0.2. This
set of parameters is consistent with the one in 1D tests (see [8, 9]).

The first group of results (Fig. 2) demonstrates solutions obtained with the KXRCF indicator
of troubled cells and different ways to calculate numerical fluxes and to limit non-physical
oscillations. Figure 2a presents the numerical solution of the Sod problem for the MUSCL
limiter and the LF numerical flux. These simple tools provide rather monotonous solution with
the considerably low resolution of discontinuities: about 6 cells per shock wave and dozen of
cells per contact discontinuity. Moreover, there is the lack of accuracy along rarefaction wave
and distinctive “hump” in front of it.

The more accurate HLLC flux usage permits to increase the overall quality of the numerical
solution (Fig. 2b). This replacement improves rarefaction wave approximation and correspon-
dence between the result and analytical solution in smooth regions despite maintaining numbers
of cells per discontinuities.

Replacement of the MUSCL limiter with the WENO S one leads to more efficient
improvement (Fig. 3,4). This limiter provides 2-cell resolution of the shock wave and 5-cell
resolution of the contact discontinuity even with dissipative numerical flux like LF, while it
maintains the original compactness of the DG scheme: the stencil includes only the neighbouring
cells (Fig. 3a). As in the original WENO approach, spurious oscillations may not disappear
completely, but their amplitude decreases with the mesh steps decreasing. One can see such
oscillations in the smooth solution regions (between the discontinuities). More accurate Riemann
solvers like the HLLC improve the quality of numerical solution (Fig. 3b, 4a).

It should be noted, that the solution monotonicity significantly depends on the troubled cells
indication method. Figure 4b shows the result of simulation without any indication. Being
applied at every cell, WENO S limiter provides the much better result, overcoming distinctive
hump in front of rarefaction wave and some oscillation in smooth regions. Nevertheless, troubled
cells indication considerably decrease the computational cost of limitation procedure, and the
KXRCF indicator seems to be suitable because of the relative simplicity of its implementation
in multidimensional cases.
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(a) (b)

Figure 2. The Sod problem, the density distribution at the final moment of time t = 0.2: the
analytical solution (black line) and the numerical solution (red dots) obtained with the MUSCL
approach, the KXRCF indicator and the numerical fluxes LF (a) and HLLC (b).

(a) (b)

Figure 3. The Sod problem, the density distribution at the final moment of time t = 0.2: the
analytical solution (black line) and the numerical solution (red dots) obtained with the WENO S
limiter, the KXRCF indicator and the numerical fluxes LF (a) and HLL (b).

The next test is the Sod problem in the unit square where the wavefront is initially placed
on the diagonal. Initial conditions for this problem are:

(ρ, u, v, w, p) =

{
(1, 0, 0, 0, 1), x+ y ≤ 1,
(0.125, 0, 0, 0, 0.1), x+ y > 1.
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(a) (b)

Figure 4. The Sod problem, the density distribution at the final moment of time t = 0.2: the
analytical solution (black line) and numerical solution (red dots) obtained with the numerical
flux HLLC and the WENO S limiter applied to cells chosen by KXRCF indicator (a) or to all
cells (b).

The numerical solution (Fig. 5) is obtained on the 40 × 40 mesh with the Courant number
equals 0.1 until time t = 0.2. The HLLC Riemann solver was chosen. Boundaries of the
computational domain are supposed to be open, that means zero normal derivatives of the
computational variables. This kind of boundary condition leads to the appearance of the spurious
secondary waves in subregions near the corners of the square computational domain, caused by
the discontinuities at the cells near those corners. Therefore, for efficient comparison between
numerical and analytical solutions we consider their sections along the line x = y, where the
influence of disturbances from corners can be neglected.

The numerical scheme with the MUSCL limiter has high numerical viscosity (Fig. 5a). In
opposite, the WENO S limiter permits to obtain an admissible numerical solution (Fig. 5b).
The resolution of discontinuities has the same quality as in “quasi-1D” case.

4.3. Sedov explosion problem
The last test is the Sedov explosion problem involving the propagation of a cylindrical blast wave
from a δ-function initial pressure perturbation through the stable medium. This one allows to
check the ability of the code to handle strong shocks.

Modelling of this problem is carried out on the unit square domain with the mesh of 200×200
cells and Courant number of 0.2 until t = 0.1. Boundaries are assumed to be open. Initial
condition for the problem is following:

(ρ, u, v, w, p) =

{
(1, 0, 0, 0, pin(r)), r ≤ δr,
(1, 0, 0, 0, 10−5), r > δr,

pin(r) =
γ − 1

πδr2
,

where δr = 3.5H — the radius of the disturbance field, H — the minimal linear cell size.
Figure 6 shows the resulting density distribution computed with HLLC Riemann solver and

WENO S limiter. Handling such a strong discontinuity requires effective limitation technology,
because it needs enough numerical dissipation to overcome a spurious oscillations without
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(a) (b)

Figure 5. The Sod problem, density distribution along the line x = y in the final moment
of time: the analytical solution (black line) and numerical solution (red dots). The calculation
with numerical fluxes HLLC and limiters MUSCL (a) and WENO S (b).

smoothing a shock profile. Current test shows, that WENO S limiter with the characteristic
decomposition provides sufficient monotonization quality to prevent the blow-up of the code
while the limiter itself fails.

(a) (b)

Figure 6. The Sedov explosion problem, density distribution along the radius y = 0 (a) and
in the whole domain (b) at the time t = 0.1; Co = 0.2, 200× 200 cells mesh in the unit square
domain. Black line represents analytical solution, red dots — numerical solution. The calculation
with numerical flux HLLC and limiter WENO S with the characteristic decomposition.

Resulting numerical solution is in good agreement with the analytical solution (fig. 6a).
Despite some discrepancy between them on the smooth part, the shock wave takes 3 cells. Figure
6b demonstrates, that the overall distribution of the solution components reflects symmetric
nature of the phenomenon.
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5. Summary
The RKDG algorithm for 2D gas dynamics problems was implemented in in-house C++ code
with the Lax — Friedrichs, HLL, HLLC numerical fluxes, the KXRCF indicator of troubled cells
and the WENO S and MUSCL limiters. Piecewise-linear numerical solution representation in
the acoustic pulse propagation problem provides a good agreement with the analytical solution
even on rather coarse mesh against the too dissipative FVM results. The efficiency of two
implemented limiters has been examined on the Sod problem of discontinuities propagation
in the “quasi-1D” case along the x-axis and along the diagonal of a square domain. The
numerical scheme with the MUSCL limiter has higher numerical diffusion near discontinuities in
comparison with the WENO S algorithm: 6 vs 3 cells for the shock wave and 12 vs 5 cells for the
contact discontinuity representation, respectively. It is shown that the KXRCF algorithm may
lead to the non-monotonic solutions: oscillations with small amplitude can arise between the
discontinuities. The algorithm can be featured to deal with strong shocks by the limiting of local
characteristic variables instead of conservative ones. This modification prevents the numerical
blow-up of the Sedov explosion simulation and keeps the high efficiency of the code in terms of
the discontinuity resolution quality.
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